10,000+ hours of Operating Experience with HTS Machines
Content

- Overview on Siemens HTS Machines & Focus for today
- The 4 MVA HTS-Generator at a glance
- Setup for the 10.000+ project
- Typical operation
- FAQ
- Summary
Wind Power
Offshore DD Wind Turbine HTS Generator

SC Generator Advantages
- Compact: Reduced volume and mass
- Increased efficiency
- Unlimited reactive power (p.f. = 0) available
- Stiffness: Low voltage dip at load changes
- Very low Total Harmonic Distortion (THD)

But: Full advantages only with stator air-gap winding
Amount of Superconductor scales with $2p$ as exponent!

Why Superconductors for Wind?
- Significant volume and mass advantages expected >10MW
- System cost advantage for complete turbine expected because of reduced mass and volume
- Maybe enabling technology because of mass restrictions and logistics
- Market size extremely attractive → High attention in HTS community

Potential enablers
- Hybrid machines without air-gap winding
- Stationary field winding (simple cooling) with inexpensive LTS and rotating armature winding
- Advances in converter and switch gear technologies for very low el. frequencies, enabling air-gap designs
- New superconductors (like MgB_2) or improved price-performance ratio for HTS for high $2p$ air gap designs

Potential enablers addressed by many talks throughout today’s program
Experience & focus for today`s talk

Development of three machines for industrial applications (BMBF & BMWi)

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 kW 4 MVA Generator</td>
<td>Three machines successfully built and tested. Covering spectrum from 2-pole Generator (4 MVA, 3,600 1/min) to high torque VSD (320 kNm, 30…120…190 1/min). Long-term test 4 MVA –Generator for more than 10,000 hours at the Siemens 20 kV industrial grid in Nuremberg; operated as synchronous condenser; test platform for new components. Design and specification aiming towards offshore (shipbuilding) application → harsh environment.</td>
</tr>
<tr>
<td>4 MW Motor 320 kNm</td>
<td></td>
</tr>
<tr>
<td>Grid experience</td>
<td></td>
</tr>
</tbody>
</table>

Feasibility proven in a commercially interesting range
Variable Speed Drive, Converter Operation; Generator; Synchronous Condenser
The 4 MVA Generator

2 pole, high speed (3600rpm) machine

Test results

- Losses halved
- Compact & lightweight
- Operation at p.f. = 0 possible
- Low voltage dip at load changes

\[\eta (\cos \varphi = 0,8) \quad 96,1 \% \quad 98,4 \% \]
\[\eta (\cos \varphi = 1,0) \quad 97,0 \% \quad 98,7 \% \]
Starting point for the 10.000+ project

Mission goals and framework

Setup

- Synchronous Condenser → No prime mover, fuel cost… but full loads except torque (anyway small, it’s a high speed machine)
- Grid operation at Siemens Nuremberg converter and motor plant
- Power controlled by facilities’ grid operators, not by HTS experts
- 1st goal: Experience long-term interaction and interdependency machine – system – grid on site
- 2nd goal: Platform for testing new components, system control, optimization

→ More than simply operating hours at preferably high MVAr
Implementation (BMWi 03SX253)
Data Acquisition

Impressions from data acquisition (remote access & control possible)

54 parameters recorded
- Speed
- Several temperatures
- Current (Rotor & Stator)
- Voltage
- Vibrations
- Setpoints
- …
A typical day

What was the typical operation of the machine?

Key findings

- Frequency (speed) and voltage fluctuating within grid tolerances
- Execution of grid operator’s demands without problems
- Grid voltage stabilization as required
- Positive impact on “smoothening” of grid voltage though quite often large loads (MVAs) are switched / ramped at the nearby system test center
FAQ, Part I

What if… the cryogenic rotor cooling fails?

Event & key findings

- Sudden shutdown of cryocoolers forced by interruption in cooling water supply
- Immediate detection, ramp down sequence of field current after a couple of seconds intended delay (now we are underexcited!)
- Fast disconnection from grid at non-critical field current
- As the grid is the machines’ driver, the rotor decelerates and comes to standstill after ~3 min

Sequence works well, no problem

Remark: machine can be operated for minutes w/o cryocooler if required
What about aging of the new technology rotor?

Process & result

The experts opinion on aging: Due to low, constant operating temperature **no aging**

After 4000+ operating hours

- Drag rotor, open it and inspect it
- Reassemble rotor
- Repeat all initial lab measurements (zero operating hours)

The expert is not refuted: **nothing has changed** within measurement accuracy

V-I-curves

After 4000+ hours

Initial measurement
And robustness?

Storyline (“test for robustness”)

$t < t_1$

Weekend, low load to compensate, Grid Control Center (GCC) and Machine System Control (MSC) in automated operation

$t = t_1$

Suddenly, a plain and nice “0A” field current I_f is reported from the rotor (though the current was not changing in reality)

MSC: “I_f zero, below GCCs’ request. Ramp up I_f!”
FAQ, Part III (2)

And robustness?

Storyline (“test for robustness””)

$t=t_2$

GCC: “Reactive load overcompensated. Reduce I_f to no load excitation!”

MSC: “I_f zero, below request. Ramp up I_f!”

$t=t_3$

GCC: “Voltage leaving tolerable region. Reduce I_f to no load voltage excitation! Going to open breakers!”

MSC: “I_f zero, below request. Ramp up I_f! …Breakers opening?!?”

The generator brakes on the secondary of the (primary open) transformer within <30s while complex transient events occur.

At that moment, it was at >120% nom. load
Summary

What are the lessons learnt, what are the measures

Periphery
- Several challenging events triggered by simple things like door breaker, water supply, UPS etc.

Rotor and Generator
- Always served well

Control
- At beginning of project, GGC sends MVAr requests to the MSC. MSC executes via control of I_f. Background: Lack of experience with HTS field windings. Controlling I_f pretends you are in control of the rotor (HTS) current.
- Testing new components and “optimizing” control \rightarrow increased complexity \rightarrow number of events like “test for robustness” increasing
- Best result (achieved at the project last phase): operate the rotor completely blind (no signals used for control!). Experiencing the rotors’ robustness needed to dare…

Trust, not fear
Thank you for your attention

Contact information

Dr. Joern Grundmann
Senior Key Expert
CT REE PET EMS-DE
Guenther-Scharowsky-Str. 1
91058 Erlangen, Germany

Phone: +49 (9131) 73 10 54
Fax: +49 (9131) 73 33 23
Mobile: +49 (174) 34 42 08 6
E-mail: joern.grundmann@siemens.com

Internet
siemens.com/innovation

Intranet
intranet.ct.siemens.com